A reinforcement learning approach to parameter selection for distributed optimal power flow
نویسندگان
چکیده
With the increasing penetration of distributed energy resources, optimization algorithms have attracted significant attention for power systems applications due to their potential superior scalability, privacy, and robustness a single point-of-failure. The Alternating Direction Method Multipliers (ADMM) is popular algorithm; however, its convergence performance highly dependent on selection penalty parameters, which are usually chosen heuristically. In this work, we use reinforcement learning (RL) develop an adaptive parameter policy alternating current optimal flow (ACOPF) problem solved via ADMM with goal minimizing number iterations until convergence. We train our RL using deep Q-learning show that can result in significantly accelerated (up 59% reduction compared existing, curvature-informed methods). Furthermore, demonstrates promise generalizability, performing well under unseen loading schemes as losses lines generators 50% iterations). This work thus provides proof-of-concept applications. • targets task ACOPF problems ADMM. propose adaptively adjust parameters. Parameters produced by accelerates Trained generalizes varying loads network outage.
منابع مشابه
a benchmarking approach to optimal asset allocation for insurers and pension funds
uncertainty in the financial market will be driven by underlying brownian motions, while the assets are assumed to be general stochastic processes adapted to the filtration of the brownian motions. the goal of this study is to calculate the accumulated wealth in order to optimize the expected terminal value using a suitable utility function. this thesis introduced the lim-wong’s benchmark fun...
15 صفحه اولA Reinforcement-Learning Approach to Power Management
We describe an adaptive, mid-level approach to the wireless device power management problem. Our approach is based on reinforcement learning, a machine learning framework for autonomous agents. We describe how our framework can be applied to the power management problem in both infrastructure and ad hoc wireless networks. From this thesis we conclude that mid-level power management policies can...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملDistributed Approach for DC Optimal Power Flow Calculations
The trend in the electric power system is to move towards increased amounts of distributed resources which suggests a transition from the current highly centralized to a more distributed control structure. In this paper, we propose a method which enables a fully distributed solution of the DC Optimal Power Flow problem (DC-OPF), i.e. the generation settings which minimize cost while supplying t...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electric Power Systems Research
سال: 2022
ISSN: ['1873-2046', '0378-7796']
DOI: https://doi.org/10.1016/j.epsr.2022.108546